Wolff, Dietmar; Schmidt, Lisa-Marie (2024)
Newsletter Digital Insight 12/2024, 12/2024, S. 9-10.
Malek, Khadhraoui; Plenk, Valentin (2024)
DOI: 10.57944/1051-189
This book is intended as a practical guide to the concepts of hardware and software configuration for industrial production automation using the TIA PORTAL software platform. Thus, anyone working in the field of automation will benefit from reading it, while it has been written for undergraduate students of electrical, mechanical and industrial engineering, as well as engineering students engaged in similar academic pursuits.
This book deals with the use of S7 1200 and S71500 PLCs to control operational components in automated systems, in accordance with current standards. It is a good starting point into the world of Siemens' Totally Integrated Automation (TIA) product range.
The book also contains practical examples and explanatory diagrams of the graphical interfaces of the TIA PORTAL software, which illustrate the programming and configuration procedures and techniques.
Those interested in developing local industrial communication networks to implement centralised and decentralised control system architectures will also find this book useful. It details techniques provided by Siemens that are well suited to programming plans under the TIA PORTAL platform.
It also introduces the reader to Human Machine Interface (HMI) development, covering topics such as hardware configuration, software programming, networking, testing and validation.
This book is an invaluable resource for those new to the field of industrial automation, as well as for teachers wishing to teach and gain expertise in this specialised area.
Wagener, Andreas (2024)
Nerdwärts.de https://nerdwaerts.de/2024/11/wie-der-simplification-bias-unseren-sinn-fuer-gute-entscheidungen-truebt/ 2024.
Natürlich sollte man nichts verkomplizieren. Oft sind ja einfache Lösungen durchaus sinnvoll. Aber angesichts der Komplexität unserer Umwelt neigen wir offenbar dazu, Probleme auf vermeintlich eindeutige Ursachen zurückzuführen. Dieser „Simplification Bias“ bestimmt zunehmend den gesellschaftlichen Diskurs, führt aber auch in Managementfragen zu schlechten Entscheidungen.
Wolff, Dietmar (2024)
Impulsvortrag v3d Die Digitalisierung des Personalmanagements (HR digital), Kassel 26.11.2024.
Wagener, Andreas (2024)
Nerdwärts.de https://nerdwaerts.de/2024/11/wie-ki-das-loyalty-marketing-veraendert/ 2024.
Loyalty Marketing hat sich in den letzten Jahren stark gewandelt. Unternehmen müssen heute weit mehr tun, als nur Rabattkarten auszustellen oder Treuepunkte zu vergeben, um ihre Kunden langfristig zu binden. Künstliche Intelligenz (KI) spielt dabei zunehmend eine zentrale Rolle, insbesondere bei der Datenanalyse, Automatisierung und Personalisierung.
Wagener, Andreas (2024)
Discussion Panel “Intelligent Loyalty 5.0”, Top Voices – The Future of Loyalty 2024.
Wolff, Dietmar; Kreidenweis, Helmut (2024)
KI in der Sozialwirtschaft – Eine Orientierungshilfe für die Praxis 2024, S. 117-129.
Wolff, Dietmar (2024)
Vortrag bei der Tagung des Bundesverbandes Deutscher Stiftungen in Bamberg.
Wolff, Dietmar; Stock, Nele (2024)
Vortrag bei der Vincentz Altenheim Digital Konferenz, online.
Einhauser, Sebastian; Asam, Claudia; Weps, Manuela; Senninger, Antonia; Peterhoff, David; Bauernfeind, Stilla; Asbach, Benedikt; Carnell, George William; Heeney, Jonathan Luke; Wytopil, Monika; Fuchs, André; Messmann, Helmut; Prelog, Martina; Liese, Johannes; Jeske, Samuel D.; Protzer, Ulrike; Hoelscher, Michael; Geldmacher, Christof; Überla, Klaus; Steininger, Philipp; Wagner, Ralf; Gall, Christine; Wieser, Andreas; Müller-Schmucker, Sandra M.; Beileke, Stephanie; Goekkaya, Mehmet; Kling, Elisabeth; Rubio-Acero, Raquel; Plank, Michael; Christa, Catharina; Willmann, Annika; Vu, Martin; Lampl, Benedikt M.J.; Almanzar, Giovanni; Kousha, Kimia; Schwägerl, Valeria; Liebl, Bernhard; Weber, Beatrix; Drescher, Johannes; Scheidt, Jörg; Siebenhaar, Yannic; Reinel, Dirk; Wogenstein, Florian; Gefeller, Olaf; Covako-Study, Group (2024)
Einhauser, Sebastian; Asam, Claudia; Weps, Manuela; Senninger, Antonia...
eBioMedicine 110, 105438.
DOI: 10.1016/j.ebiom.2024.105438
Mehling, Simon; Hörnlein, Stefanie; Schnabel, Tobias; Beier, Silvio; Londong, Jörg (2024)
Water Reuse.
DOI: 10.2166/wrd.2024.054
Wagener, Andreas (2024)
Nerdwärts.de https://nerdwaerts.de/2024/11/macht-ki-uns-duemmer-oder-klueger-welche-kompetenzen-werden-wir-in-zukunft-noch-brauchen-und-wie-vermitteln-wir-diese/ 2024.
Der Rückgriff auf ChatGPT & Co. vereinfacht vieles im Alltag. Es ist unkompliziert und naheliegend, sich insbesondere Texte durch generative KI schreiben zu lassen oder auch Zusammenfassungen von komplexen und langen Artikeln damit zu erstellen, gerade wenn Zeit und Aufmerksamkeit begrenzt sind. Aber werden wir damit nicht zu bequem? Lassen wir unsere grauen Zellen damit verkümmern?Oder verkennen wir mit solchen Fragen das Potenzial der Technologie? Und welche Kompetenzen brauchen wir dann überhaupt in Zukunft noch?
Wolff, Dietmar; Klingbeil, Darren (2024)
Altenheim - Dossier Telematikinfrastrukur 2024 63, S. 20.
Wolff, Dietmar; Klingbeil, Darren (2024)
Altenheim - Dossier Telematikinfrastruktur 2024 63, S. 20.
Buchmann, Thomas (2024)
Proceedings of the ACM/IEEE 27th International Conference on Model Driven Engineering Languages and Systems, MODELS Companion 2024, Linz, Austria, September 22-27, 2024 2024, S. 550-555.
DOI: 10.1145/3652620.3687802
This paper investigates the comparative effectiveness of model-to-model transformations generated by an LLM based upon user prompts versus those created with dedicated model transformation languages, using a standard benchmark. The emergence of Generative AI offers a novel approach, allowing developers to specify transformations in natural language rather than learning specialized languages. However, our findings suggest that, in its current state, generative AI does not yet pose a threat to dedicated model transformation languages. While AI-assisted approaches promise to provide flexibility and accessibility, dedicated model transformation languages still offer structured advantages crucial for complex transformations, especially when bidirectionality and incrementality are mandatory requirements. This research contributes to the ongoing discourse on the role of AI in software engineering, highlighting its potential and current limitations in enhancing model transformation processes.
Anjorin, Anthony; Buchmann, Thomas; Fritsche, Lars (2024)
Proceedings of the ACM/IEEE 27th International Conference on Model Driven Engineering Languages and Systems, MODELS Companion 2024, Linz, Austria, September 22-27, 2024 2024, S. 950-959.
DOI: 10.1145/3652620.3688217
Being able to maintain the consistency between various different, but related models is an important enabler for model-based software engineering. Research on bidirectional transformations (bx) addresses this issue and has resulted in various and diverse formal foundations, approaches, tools, and application scenarios. In order to understand and compare different bx approaches, we have developed benchmarx, a benchmarking framework specifically for bx. Up until now, however, benchmarx has been limited to one-sided model synchronisation tasks, where only one of two related models can be changed at a time.As the more general case of concurrent model synchronisation is crucial for many practical applications of bx, we propose in this paper an extension to our bx benchmarking framework to support concurrent model synchronisation tasks, where two related models can both be changed concurrently and must then be synchronised to restore consistency. To evaluate our new extensions we present an update of an existing benchmarx example, families-to-persons, to include new test cases requiring concurrent synchronisation. We discuss some of the challenges involved in defining such a benchmark including handling conflicts, defining the expected behavior of the bx tool under test, and providing bx tools with enough freedom to reject some of the changes to either model. We also present a solution to the updated families-to-persons benchmarx example implemented using BXtend as a bx tool.
Wolff, Dietmar; Klingbeil, Darren (2024)
Altenheim.net 63, S. S. 20.
Zöllner, Michael; Gemeinhardt, Jan; Krause, Moritz (2024)
HUMAN '24: Proceedings of the 7th Workshop on Human Factors in Hypertext 2024, 7, S. 1-4.
DOI: 10.1145/3679058.3688635
We are presenting our approach for interactive cultural heritage storytelling in WebXR. Therefore, we are describing our scenes’ structure consisting of (stylized) photospheres of the historic locations, 3D models of 3D-scanned historic artifacts and animated 2D textures of historic characters generated with a machine learning toolset. The result is a platform-independent web-application in an immersive interactive WebXR environment running in browsers on PCs, tablets, phones and XR headsets thanks to the underlying software based on the open-source framework A-Frame. Our pa- per describes the process, the results and the limitations in detail. The resulting application, designed for the Fichtelgebirge region in Upper Franconia, Germany, offers users an immersive digital time travel experience in the virtual space and within a museum setting connecting real artifacts and virtual stories.
Peinl, René (2024)
c't Magazin für Computertechnik 2024 (23), S. 130-132.
Roboter, die autonom und flexibel arbeiten, könnten in Zukunft im Haushalt helfen. Um ihre Schritte zu planen, brauchen sie künstliche Intelligenz. Generative Sprachmodelle sollen dafür nicht nur Sätze oder Programmcode schreiben, sondern die Abläufe auch strukturieren.
Atzenbeck, Claus; Rubart, Jessica (2024)
35th ACM Conference on Hypertext and Social Media 2024.
DOI: 10.1145/3679058
Alfons-Goppel-Platz 1
95028 Hof
T +49 9281 409 - 4690
valentin.plenk[at]hof-university.de